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A B S T R A C T   

Background: A preclinical stage of Alzheimer’s disease (AD) precedes the symptomatic phases of mild cognitive 
impairment (MCI) and dementia, which constitutes a window of opportunities for preventive therapies or 
delaying dementia onset. 
New method: We propose to use categorical predictive models based on survival analysis with longitudinal data 
which are capable of determining subsets of markers to classify cognitively unimpaired (CU) subjects who 
progress into MCI/dementia or not. Subsequently, the proposed combination of markers was used to construct 
disease progression models (DPMs), which reveal long-term pathological trajectories from short-term clinical 
data. The proposed methodology was applied to a population recruited by the ADNI. 
Results: A very small subset of standard MRI-based data, CSF markers and cognitive measures was used to predict 
CU-to-MCI/dementia progression. The longitudinal data of these selected markers were used to construct DPMs 
using the algorithms of growth models by alternating conditional expectation (GRACE) and the latent time joint 
mixed effects model (LTJMM). The results show that the natural history of the proposed cognitive decline 
classifies the subjects well according to the clinical groups and shows a moderate correlation between the 
conversion times and their estimates by the algorithms. 
Comparison with existing methods: Unlike the training of the DPM algorithms without preselection of the markers, 
here, it is proposed to construct and evaluate the DPMs using the subsets of markers defined by the categorical 
predictive models. 
Conclusions: The estimates of the natural history of the proposed cognitive decline from GRACE were more robust 
than those using LTJMM. The transition from normal to cognitive decline is mostly associated with an increase in 
temporal atrophy, worsening of clinical scores and pTAU/Aβ. Furthermore, pTAU/Aβ, Everyday Cognition score 
and the normalized volume of the entorhinal cortex show alterations of more than 20% fifteen years before the 
onset of cognitive decline.   

1. Introduction 

Alzheimer’s disease (AD) is the most common neurodegenerative 
disorder in the elderly. AD is characterized by a progressive loss of 
cognitive abilities and specific neuropathological alterations. Accumu-
lation of amyloid plaques (Aβ deposition) and neurofibrillary tangles 
(pathologic tau) in the brain are the main symptoms, which may begin 
as early as middle age (Hyman et al., 2012). A preclinical stage of AD 
precedes the symptomatic phases of mild cognitive impairment (MCI) 
and dementia. Autopsy studies identified the early stages of Aβ and tau 
pathologies in individuals who were cognitively unimpaired (CU) dur-
ing life, representing a preclinical stage of AD (Price et al., 2009). The 
predominant research hypothesis postulates that Aβ precedes and ac-
celerates neocortical tau pathology and, together, these factors precip-
itate cognitive decline (Nelson et al., 2012). 

Many clinical trials and interventions for dementia are focused on 

the preclinical stage of AD, which constitutes a window of opportunities 
for prevention therapies or delaying dementia onset. Demonstrating that 
treatments are effective during the early stage will require under-
standing of the magnitudes of beta-amyloid and tau pathologies in CU 
adults (Sperling et al., 2014). However, the relation between Aβ and tau 
status and cognition in early AD varies widely (Baker et al., 2017; Insel 
et al., 2019). Therefore, it is critical to understand the course of AD from 
early-stage asymptomatic to late-stage dementia by means of the pat-
terns of progression of multiple markers, including neuropsychological 
measures (NMs), magnetic resonance imaging (MRI)-based data and 
cerebrospinal fluid (CSF) biomarkers. 

The diagnosis of CU, MCI or dementia by expert clinicians has 
traditionally relied on cognitive assessments. However, including mul-
tiple domains can help explain and more accurately predict the course of 
the disease. AD is now perceived as a biological continuum that ranges 
all the way from normal cognition to dementia (Jack et al., 2018). 
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Cognitive decline occurs continuously over a long period, and the pro-
gression of biomarker measures is also a continuous process that begins 
before symptoms. The risk of progression from CU to MCI/dementia 
depends on a number of factors, including age, sex, and apolipoprotein E 
(APOE) status (Vermunt et al., 2019). While a number of studies have 
examined the risk of progression from CU to MCI/dementia at the group 
level (Soldan et al., 2015; Chen et al., 2017; Parnetti et al., 2019), other 
authors had used these same measures for predicting progression at the 
individual level. Multiple investigators had reported predictive models 
for progression using baseline or longitudinal data and each publication 
had emphasized a different combination of risk factors and markers. 
Several groups have attempted to characterize this subtle cognitive 
impairment using a single cutoff point on a global cognitive domain 
score (Jack et al., 2012), or with a memory composite score (Vos et al., 
2013) or with subtle decline in functional abilities (Edmonds et al., 
2015). Recent efforts to improve AD risk prediction have sought to 
combine sets of variables together that have been linked to symptom 
onset. These risk prediction approaches have often combined measures 
associated with CSF biomarkers, hippocampal or entorhinal normalized 
volume and cognitive test scores (Gavidia-Bovadilla et al., 2017; Gross 
et al., 2017; Albert et al., 2018; Steenland et al., 2018; van Maurik et al., 
2019; Wang et al., 2020; Luo et al., 2021; Palmqvist et al., 2021). 

Some studies reviewed automated techniques for classifying and 
predicting diagnosis using data from different modalities (Zheng et al., 
2016; Rathore et al., 2017; Han et al., 2017; Parnetti et al., 2019). While 
these procedures to assess disease severity are valid for creating a clin-
ical grouping of patients, modeling disease progression by a number of 
discrete stages is a simplification of a continuous process. AD progres-
sion can only be established by repeated evaluations of the patients over 
time. Longitudinal studies allow the observation of individual patterns 
of change, providing relevant information that can improve the differ-
ential diagnosis (Bernal-Rusiel et al., 2013; Gavidia-Bovadilla et al., 
2017; Minhas et al., 2017). A standard strategy for analyzing the asso-
ciation between longitudinal data and the progression to AD is to 
perform a comparison based on dichotomizing subjects into two clinical 
groups (Chételat et al., 2005; Moradi et al., 2015; Korolev et al., 2016; 
Gavidia-Bovadilla et al., 2017), which uses the linear mixed effect (LME) 
for modeling biomarker trajectories. However, the nature of the esti-
mation problem with regard to AD progression is not dichotomous. To 
overcome these drawbacks, survival models consider a unique clinical 
group that takes into account conversion times and finite follow-up or 
censoring (Kleinbaum and Klein, 2010; Sabuncu et al., 2014). These 
predictive models can be built by means of the temporal modeling of 
biomarker trajectories using LME combined with extended Cox survival 
analysis, which allows the use of exploratory variables that are time 
dependent (Kleinbaum and Klein, 2010). These approaches allow a 
coarse approximation of the multivariate features to be used to classify 
clinical groups. 

Recently, a new machine learning framework regards AD progres-
sion as a continuous process and derives long-term pathological trajec-
tories from short-term clinical data (Donohue et al., 2014; Guerrero 
et al., 2016; Schmidt-Richberg et al., 2016; Li et al., 2019; Lorenzi et al., 
2019). Long-term disease dynamics are of great interest and importance 
and have been hypothesized without rigorous methods (Jack et al., 
2010; Donohue et al., 2014). Beyond giving a data-driven description of 
the natural evolution of AD, disease progression models (DPMs) provide 
automatic diagnosis by explicitly ordering biomarkers from normal to 
pathological stages along the disease time axis in a multivariate manner. 
DPM is based on the analysis of longitudinal samples from multiple 
cohorts at different stages of the disease. A time zero is required to fit the 
DPM. Age is typically considered a risk factor for developing AD, but age 
at first diagnosis of AD can vary by decades among patients. A more 
natural scale for studying the patterns of cognitive decline is time since 
symptom onset. The time of onset of cognitive impairment might be a 
candidate time zero. For example, Guerrero et al. (2016) and Schmid-
t-Richberg et al. (2016) proposed two approaches, which require cohorts 

with known disease onset. Guerrero et al. (2016) used mixed effects 
modeling to derive global and individual marker trajectories for a 
training population, which was later used to instantiate personalized 
models for unseen subjects. Schmidt-Richberg et al. (2016) proposed a 
DPM that describes typical trajectories of biomarker values in the course 
of disease, which were learned using quantile regression. However, the 
disease onset can be unreliable, the diagnosis is subjective, MCI or de-
mentia are not absorbing states, and reversion to CU diagnoses occurs. 
An alternative class of DPM relies on the ordering of the observed lon-
gitudinal trajectories and extracting the modeling of the temporal 
progress of the disease. Donohue et al. (2014) model these trajectories 
based on self-modeling regression. Long-term progression curves for the 
multiple outcomes and subject-specific random effects and time shifts 
are estimated iteratively until the convergence of the proposed algo-
rithm, which is called growth models by alternating conditional 
expectation (GRACE). Li et al. (2019) proposed a latent time joint mixed 
effects model (LTJMM) for characterizing biomarker trajectories in 
aging. LTJMM extends joint mixed effects models to include an 
individual-specific latent time shift. Another approach to DPM in AD is 
event-based models (Fonteijn et al., 2012; Young et al., 2014; Venka-
traghavan et al., 2019), where cutoff points of abnormality are inferred 
from observed biomarkers, and disease stage is mapped to a discrete set 
of biomarker abnormality events. 

In the present study, we propose a DPM based on the determination 
of an optimal subset of markers. These optimal measures were selected 
through a predictive model that uses survival analysis with longitudinal 
data. Subsequently, the proposed combination of MRI-based data, CSF 
biomarkers and NMs was used to construct DPMs using GRACE and 
LTJMM. 

2. Materials 

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset was 
selected to evaluate the proposed two-stage approach, where subjects 
made different numbers of visits to the clinic (Wyman et al., 2013). A 
different number of samples from each subject and markers are avail-
able, e.g., not all available time points contain all cognitive, CSF data or 
imaging information. The inclusion and exclusion criteria, schedule of 
assessments, and other details can be found at http://adni.loni.usc.edu/. 
The ADNI is a large-scale multisite study that aims to analyze bio-
markers for characterizing the progression of AD. Subjects were 
recruited from 56 sites in the United States and Canada (Weiner and 
Veitch, 2015). To date, the ADNI has recruited over 2100 adults, aged 
between 54 and 92 years, to participate in its four studies (ADNI-1, -GO, 
− 2 and − 3). Some ADNI-1 participants are currently followed for more 
than 10 years. ADNI has developed standardized methods that would 
allow the comparison of results from multiple centers and 
scanner-hardware variations within the initiative (Weiner and Veitch, 
2015). The ADNI has been used by many publications focused on the 
characterization of age-related brain changes (Weiner et al., 2013) and 
early prediction of conversion to probable AD (Moradi et al., 2015; 
Eskildsen et al., 2015; Korolev et al., 2016; Gavidia-Bovadilla et al., 
2017). 

The information was extracted from the ADNIMERGE R package 
(Anon, 2021). We focused on the following assessments: Alzheimer’s 
Disease Assessment-Cognitive 11 and 13-item scale (ADAS11, ADAS13), 
Clinical Dementia Rating-Sum of Boxes (CDRSB), Mini-Mental State 
Examination (MMSE), Montreal Cognitive Assessment (MOCA), Rey 
Auditory Verbal Learning Test Immediate (RAVLT Immediate, Learning, 
Forgetting, Percent Forgetting), Everyday Cognition (ECog)-total by 
participant (ECogPtTotal) and study partner (ECogSPTotal) and Func-
tional Assessment Questionnaire (FAQ). Brain imaging measures include 
volumetric measure summaries of hippocampal, ventricular, entorhinal, 
and whole brain volumes. These measures were computed with Free-
surfer using a cross-sectional processing (v4.3 and 5.1) (https://surfer. 
nmr.mgh.harvard.edu/). 
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A second analysis was performed among individuals who also had 
available beta-amyloid data. Various studies have also examined the 
association of cognitive impairment with CSF levels of Aβ42, total tau 
(TAU), phosphorylated tau 181p (pTAU), and the ratio of TAU∕Aβ or 
pTAU∕Aβ (Jack et al., 2018; Hansson et al., 2018; Insel et al., 2019). 
Lumbar puncture was performed as described in the ADNI procedures 
manual (http://www.adni-info.org/). CSF samples were measured using 
the Elecsys β-amyloid(1− 42) CSF (Bittner et al., 2016), and the Elecsys 
phosphotau (181 P) CSF and Elecsys total-tau CSF immunoassays on a 
cobas e 601 analyzer (software version 05.02), according to the pre-
liminary kit manufacturer’s instructions and as described in previous 

studies (Bittner et al., 2016). CSF measures were collected only on a 
subset of ADNI volunteers, as evidenced by the relative sparsity of CSF 
data. 

To predict CU-to-MCI/dementia conversion, we chose patients 
diagnosed with CU at their baseline assessments and asked whether their 
diseases had converted to MCI/dementia during the follow-up of sub-
jects. At each visitation, a clinical diagnosis was made to identify CU 
subjects whose cognitive decline had converted to probable MCI/de-
mentia according to ADNI clinical assessments (Anon, 2021). For those 
subjects whose disease progression had converted to MCI or dementia 
(who were denoted as progression CU, pCU), the conversion time was 

Table 1 
Baseline demographic and clinical characteristics of the subjects. Data represent the mean (SD) (minimum, maximum) or n (%). The normalized volumes were scaled 
by 103. NHV= normalized hippocampal volume; NMV= normalized medial temporal lobe volume; NEV= normalized entorhinal volume; R-Immediate= RAVLT 
Immediate;.  

Demographic and clinical characteristics 

Feature MRI+NM MRI+NM+CSF 

Subjects 316 (sCU) 93 (pCU) 523 (MCI) 218 (sCU) 64 (pCU) 399 (MCI) 
Visits 1967 (33.6%) 804 (13.8%) 3086 (52.7%) 1326 (30.9%) 570 (13.3%) 2394 (55.8%) 
Female 160 (50.6%) 42 (45.2%) 217 (41.5%) 116 (53.2%) 28 (43.8%) 167 (41.9%) 
Age 74.19 (5.80) 76.36 (5.04) 72.29 (7.80) 73.71 (6.02) 76.43 (5.16) 71.67 (7.61)  

56.20–89.60 63.20–89.00 54.40–91.40 56.20–89.60 63.20–89.00 54.40–91.40 
Education 16.34 (2.75) 16.02 (2.67) 15.90 (2.88) 16.36 (2.63) 16.00 (2.75) 16.11 (2.73)  

6.00–20.00 8.00–20.00 4.00–20.00 6.00–20.00 8.00–20.00 8.00–20.00) 
MRI data 
NHV 4.97 (0.62) 4.58 (0.58) 4.69 (0.78) 5.02 (0.57) 4.63 (0.54) 4.73 (0.79)  

(3.13 6.64) (3.33 6.02) (2.66 6.80) (3.52 6.64) (3.59 6.02) (2.66 6.80) 
NVV 21.46 (10.78) 24.89 (10.92) 24.50 (13.43) 20.76 (9.75) 25.13 (11.00) 24.06 (13.39)  

(5.67 63.85) (4.60 63.27) (4.63 78.63) (5.67 61.32) (4.60 63.27) (4.63 77.60) 
NFV 11.84 (1.57) 11.50 (1.60) 11.87 (1.60) 12.17 (1.52) 11.71 (1.52) 12.08 (1.56)  

(8.18 16.47) (8.00 16.42) (7.31 17.32) (8.39 16.47) (8.00 16.42) (7.31 17.32) 
NMV 13.55 (1.51) 12.96 (1.41) 13.31 (1.62) 13.69 (1.47) 13.04 (1.41) 13.49 (1.60)  

(9.43 18.11) (9.68 17.53) (8.76 19.00) (10.34 18.11) (9.68 15.91) (8.76 19.00) 
NEV 2.57 (0.37) 2.41 (0.48) 2.41 (0.44) 2.60 (0.35) 2.42 (0.47) 2.44 (0.43)  

(1.64 3.79) (1.26 3.62) (1.12 3.76) (1.64 3.70) (1.26 3.62) (1.16 3.76) 
Cognitive outcomes 
R-Forgetting 3.57 (2.66) 4.05 (2.67) 4.30 (2.51) 3.55 (2.71) 4.22 (2.72) 4.32 (2.46)  

(− 5.00 13.00) (− 2.00 12.00) (− 4.00 13.00) (− 5.00 12.00) (− 2.00 12.00) (− 4.00 13.00) 
R-Immediate 45.18 (9.89) 41.40 (9.32) 37.43 (11.11) 46.10 (9.81) 41.02 (9.00) 38.10 (11.11)  

(16.00 71.00) (22.00 67.00) (13.00 68.00) (18.00 71.00) (22.00 64.00) (13.00 68.00) 
R-Learning 5.94 (2.20) 5.29 (2.60) 4.69 (2.52) 5.93 (2.21) 5.50 (2.51) 4.84 (2.51)  

(0.00 11.00) (− 2.00 11.00) (− 4.00 12.00) (0.00 11.00) (0.00 11.00) (− 1.00 12.00) 
R-P-Forget 33.43 (27.08) 41.89 (28.23) 51.15 (31.46) 32.76 (28.12) 41.87 (27.03) 50.27 (30.74)  

(− 100.00 100.00) (− 20.00 100.00) (− 36.36 100.00) (− 100.00 100.00) (− 20.00 100.00) (− 36.36 100.00) 
ADAS11 5.73 (2.84) 7.03 (3.20) 8.66 (3.86) 5.76 (2.92) 7.33 (3.42) 8.36 (3.79)  

(0.00 19.00) (0.00 17.00) (1.00 25.33) (0.00 19.00) (2.00 17.00) (1.00 25.33) 
ADAS13 8.79 (4.09) 11.12 (4.58) 13.93 (5.85) 8.81 (4.21) 11.33 (4.57) 13.47 (5.79)  

(0.00 23.00) (1.00 24.00) (2.00 36.33) (0.00 23.00) (3.00 24.00) (2.00 36.33) 
FAQ 0.12 (0.50) 0.29 (0.89) 1.93 (3.02) 0.13 (0.54) 0.33 (0.94) 1.90 (3.11)  

(0.00 5.00) (0.00 6.00) (0.00 21.00) (0.00 5.00) (0.00 6.00) (0.00 21.00) 
MMSE 29.10 (1.10) 29.02 (1.12) 27.96 (1.75) 29.14 (1.10) 28.94 (1.18) 28.10 (1.72)  

(25.00 30.00) (24.00 30.00) (23.00 30.00) (25.00 30.00) (24.00 30.00) (23.00 30.00) 
CDRSB 0.03 (0.13) 0.04 (0.13) 1.28 (0.75) 0.03 (0.12) 0.03 (0.12) 1.24 (0.74)  

(0.00 1.00) (0.00 0.50) (0.50 5.50) (0.00 1.00) (0.00 0.50) (0.50 5.50) 
ADASQ4 2.68 (1.68) 3.54 (1.93) 4.63 (2.27) 2.69 (1.70) 3.50 (1.84) 4.51 (2.27)  

(0.00 9.00) (0.00 10.00) (0.00 10.00) (0.00 9.00) (0.00 10.00) (0.00 10.00) 
MOCA 25.99 (2.33) 24.57 (2.15) 24.04 (3.05) 26.00 (2.38) 24.73 (2.23) 24.01 (2.98)  

(20.00 30.00) (19.00 28.00) (14.00 30.00) (20.00 30.00) (19.00 28.00) (14.00 30.00) 
EcogPtTotal 1.32 (0.30) 1.33 (0.28) 1.77 (0.51) 1.31 (0.30) 1.35 (0.27) 1.77 (0.52)  

(1.00 2.49) (1.00 2.16) (1.03 3.82) (1.00 2.49) (1.00 2.16) (1.03 3.82) 
EcogSPTotal 1.14 (0.20) 1.28 (0.40) 1.60 (0.50) 1.13 (0.17) 1.30 (0.44) 1.60 (0.51)  

(1.00 2.64) (1.00 2.87) (1.00 3.47) (1.00 1.95) (1.00 2.87) (1.00 3.47) 
CSF biomarkers 
Aβ    1227.14 (441.42) 1073.05 (472.52) 1095.01 (443.04)     

(203.00 1700.00) (200.00 1700.00) (210.90 1700.00) 
TAU    225.19 (84.78) 274.16 (90.86) 253.62 (123.65)     

(80.00 590.10) (114.20 462.80) (97.89 1300.00) 
pTAU    20.60 (8.58) 25.64 (9.21) 23.89 (13.38)     

(8.00 59.99) (9.90 48.27) (8.21 120.00) 
TAU∕Aβ    0.22 (0.15) 0.33 (0.25) 0.29 (0.24)     

(0.09 1.03) (0.11 1.61) (0.07 2.13) 
pTAU∕Aβ    0.02 (0.02) 0.03 (0.03) 0.03 (0.03)     

(0.01 0.12) (0.01 0.18) (0.01 0.20)  

C. Platero                                                                                                                                                                                                                                         



Journal of Neuroscience Methods 374 (2022) 109581

4

established between the baseline and the first visit where the patient was 
diagnosed with MCI/dementia, so long as the diagnosis was reconfirmed 
on subsequent visits. The stable CU (sCU) group only included CU sub-
jects who were followed up and whose cognitive decline did not convert 
to probable MCI/dementia. In addition, the last visits of the sCU subjects 
defined the censorship times. For the first study, i.e. with only NM and 
MRI data of the subjects, the CU subjects were divided into 316 sCU and 
93 pCU subjects according to the clinical follow-up. In the second 
analysis, i.e. adding CSF markers to MRI measurements and neuropsy-
chological tests, the cohort was established with 218 sCUs and 64 pCUs. 
Additionally, with the purpose of characterizing the cognitive decline 
from the selected biomarkers, MCI subjects who did not progress to-
wards dementia in their temporal evolution were also included. For the 
first and second analyses, 523 and 399 patients were added, respec-
tively. As expected, the number of observations decreases over time 
from baseline due to attrition and administrative censoring. Summary 
measures of baseline outcomes for each diagnosis group are presented in  
Table 1. The value ranges of the markers on the studied clinical groups 
were consistent with other works that used the ADNI database (Donohue 
et al., 2014; Moradi et al., 2017; Steenland et al., 2018), and even with 
other cohorts within the preclinical problem of AD (van Maurik et al., 
2019; Wang et al., 2020). 

3. Methods 

We propose a two-stage approach for the prediction of categorical 
diagnosis and disease progression modeling. For the first stage, a sur-
vival analysis was applied to determine some subsets of the selected 
multivariate markers from longitudinal data, which allowed discrimi-
nation between clinical groups. In the second stage, these subsets of 
multivariate outcomes were submitted to develop DPMs by means of 
GRACE and LTJMM approaches. 

3.1. Predictive models using survival analysis 

Let p markers be measured from n individuals at different follow-up 
times. We denote the measured outcome k for individual i at time j as yijk, 
where i = 1, …, n, k = 1, …, p and j = 1, …, qik. A LME model is expressed 
as: 

yijk = x′tijk βk + α0ik + α1iktijk + eijk 

where a short-term observation time is represented by tijk, x′
tijk 

is the 
row vector for the fixed effects (including variables such as age and scan 
time), and βk are the fixed effects coefficients. In addition to the fixed 
effects, a mixed effects model is used for subject-specific random effects. 
The LME models are built with an intercept and slope as random effects 
to be included in the longitudinal trajectory (Bernal-Rusiel et al., 2013). 
The parameters α0ik and α1ik are the subject- and outcome-specific 
random intercept and slope. The vector (α0ik, α1ik) follows a bivariate 
Gaussian distribution with mean zero and covariance matrix 

∑
k. These 

values reflect how the subset of regression parameters for the ith subject 
deviates from those of the population. eijk is a measurement error term 
that follows a zero-mean Gaussian distribution with variance σk. 

Given a population of CU subjects, from which a series of longitu-
dinal measurements were extracted, these outcomes were modeled by 
LME. Therefore, for each subject, it was possible to estimate the value of 
each marker over time. In addition, it was also known whether the 
subject’s disease had become MCI or dementia in the follow-up period. 
For those pCU subjects, the conversion time was calculated from the 
baseline. Otherwise, i.e. for sCU subjects, the censorship time was also 
known. An extended Cox model was constructed for each significant 
discrete time (Platero and Tobar, 2020). The Cox model can be extended 
for independent and dependent variables over time: 

hij = hjexp

(
∑p1

k=1
ηk⋅yijk +

∑p2

l=1
θl⋅zil

)

, (1) 

where hj is the baseline hazard function, and the first and second 
terms in the exponential include the effects of p1 and p2 time-varying and 
independent variables {yijk, zil} with associated coefficients {ηk, θl}, 
respectively. The hazard ratio (HR) quantifies the differential risk of an 
ith subject characterized by {yijk, zil} in relation to a reference subject 
characterized by {yrjk, zrl} at the same time: 

HRirj =
hij

hrj
= exp

(
∑p1

k=1
ηk(yijk − yrjk) +

∑p2

l=1
θl(zil − zrl)

)

, (2) 

where HR > 1 indicates that the subject characterized by {yijk, zil} 
has an increased risk of disease conversion with respect to the reference 
subject, {yrjk, zrl}. Conversely, if HR < 1, the conversion risk is 
decreased. In our case, we had three models, i.e. one for the beginning of 
the study and one each for follow-up at 12 and up to 24 months. To build 
each of these predictive models, the hazard ratios were calculated and 
converted into probabilistic terms of conversion from CU to MCI/de-
mentia using the logistic regression model: 

pirj =
1

1 + 1
HRirj

, (3) 

where HRirj is the hazard ratio at visit j, (j ∈ {0, 12, 24}) and {yijk, zil} 
and {yrjk, zrl} are the vectors of the exploratory variables of the subject 
and the reference at visit j, respectively. These vectors are formed with 
p1 time-varying and p2 time-independent variables, the latter being 
modeled by means of LME. HRirj was built by means of an extended Cox- 
LME model with {yrjk, zrl}, which was calculated using a random subset 
of the training population at visit j. This subset was sampled with the 
same number of subjects representing both sCU and pCU patients. The 
components of {yrjk, zrl} were defined by the average values of this 
population and scaled by their standard deviations. Therefore, each 
exploratory variable was defined as a z-score. If a subject with {yijk, zil} 
shows HRirj > 1, then pirj > 0.5, and on the contrary, when HRirj < 1, 
then pirj < 0.5, where pirj denotes the probability of conversion into MCI/ 
dementia of the disease of subject i at visit j. 

3.1.1. Feature selection and building the predictive models 
A nested cross-validation (CV) procedure was used to avoid model 

overfitting and optimistically biased estimates of model performance 
(Korolev et al., 2016). The procedure consisted of two nested CV loops: 
an inner loop, designed to select the optimal feature subsets for the 
proposed models, and an outer loop, designed to obtain an unbiased 
estimate of model performance. Note that in this manner, double dip-
ping, i.e., using the same data for both feature selection and learning the 
classifier, was avoided. A nested k-fold CV procedure was applied. The 
value for k was fixed to 10, a value that was found through experi-
mentation to generally result in a model skill estimate with low bias and 
modest variance (Kuhn and Johnson 2013). Both the outer and inner CV 
loops used a 10-fold CV design. In the outer CV loop, the data were 
partitioned into model and test data (see Fig. 1). In the inner CV loop, 
the model data were again partitioned into training and validation data. 

For each inner CV loop, a set of combinations of markers with 
different dimensions was proposed, which were subsequently evaluated 
in the outer CV loop. A feature ordering stage that uses the minimal- 
redundancy-maximal-relevance (mRMR) algorithm (Peng et al., 2005) 
to propose good subsets of markers for the prediction of CU conversion 
was used. Two steps of each inner CV loop were developed with the 
following activities: (I) A resampling method searched for the first 10 
subsets of each dimension that appeared most frequently in mRMR. 
Feature subsets with dimensions from 1 to 10 were explored. For this 
purpose, random partitions of training data were subjected to the mRMR 
algorithm. We used the mutual information difference metric, and the 
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features were normalized to zero mean and unit variance in the mRMR 
algorithm. This sequence (i.e., partitions of the random subsets of 
training, applying mRMR and proposing combination features) was 
repeated 100 times for each inner loop. For each dimension, the 10 
combinations of features that most frequently appeared were selected. 
(II) Predictive models were built using only the training data with the 
above candidate feature subsets. Of these, the 3 top-performing com-
binations of markers in terms of classification accuracy determined the 
evaluation of their corresponding models were selected. Therefore, for 
each outer iteration, 30 subsets for each dimension were evaluated. In 
the outer CV loop, for each candidate feature selection, a predictive 
model was built from the training data, and its performances were 
evaluated with the withheld test data, which were not used during 
feature selection, model selection, or final model construction. For 
better replicability, the nested 10-fold CV procedure was repeated with 
different partitions of the data, generating multiple performance esti-
mate values. In total, there were 30,000 evaluations of selected subsets 
for each dimension. Note that these 30,000 proposals for each dimension 
of the combinations of markers only use training information. For each 
proposed predictive model, sensitivity, specificity and accuracy scores of 
the classifiers were computed (Cuingnet et al., 2011). Additionally, 
receiver operating characteristic (ROC) curves were also calculated. The 
discriminant value of the corresponding ROC curve was estimated using 
the area under the curve (AUC). Predictive models with more frequent 
appearances of the feature subsets (i.e. number of times that the com-
bination of proposed features was evaluated by the CV procedure) and 
higher classification scores were selected. Fig. 1 shows the general 
procedure for the development of the predictive models and their sub-
sequent evaluation. 

A MATLAB implementation of our method is available at https:// 
www.nitrc.org/projects/twogrsurvana/. The proposed algorithm may 
generate new predictive models. Faced with a new problem, the subject 

identifiers, their visits, and a list of proposed markers to be explored 
must be provided. Note that both the feature selection and the con-
struction of the predictive models do not require tedious parameter 
adjustment, since mRMR does not require any parameter, nor the 
modeling of the trajectories with the LME approach, nor do the classi-
fication tasks require any parameter. 

3.2. Disease progression models 

The proposal of Donohue et al. (2014) adds a new component to 
mixed effects modeling: 

yijk = gk(tc
ijk + δi) + x′tcijk βk + α0ik + α1iktc

ijk + eijk,

where gk is a continuously differentiable monotone function and δi is 
the unknown subject-specific time shift, which has mean zero and 
variance σ2

δ . Following the same annotation above, short-term obser-
vation time is represented by tc

ijk, which indicates the centered years in 
relation to the temporal evolution of the visits, tc

ijk = tijk − (tiend∕2), 
where iend = max

k
(qik). Currently, the long-term progression time is 

computed from tc
ijk + δi. A self-modeling regression model was applied 

with linear subject-level effects and long-term features with nonpara-
metric monotone smoothing (Donohue et al., 2014). The goal of the 
algorithm is to estimate both the time shift parameters and the 
short-term and long-term curves. 

Regarding LTJMM, the temporal evolution of the markers is 
expressed as: 

yijk = γk(t
c
ijk + δi) + x′tcijk βk + α0ik + α1iktc

ijk + eijk,

the parameter γk corresponds to the outcome-specific slope with 
respect to shifted or long-term time tc

ijk + δi. Obviously, the time shift δi 

Fig. 1. Nested 10-fold cross-validation procedure for predictive model development and evaluation.  
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quantifies the progression of the i-th individual relative to the popula-
tion, which is assumed to follow δi ∼ N(0, σ2

δ ). The distribution as-
sumptions for random effects are multivariate Gaussian αi ~ N(0, Σα). 
Therefore, GRACE allows different monotonous curve shapes on the 
long-term trajectories without prespecifying any parametric families, 
and LTJMM imposes that long-term trajectories must be linear. 

Before fitting the DPM approaches to the data, the original values of 
the outcomes were transformed into percentiles using a weighted 
empirical cumulative distribution function so that all outcomes were on 
a common scale. All the outcomes are oriented to be increasing: i.e., the 
markers of disease progress from normal to abnormal on a common 
vertical scale. The percentile scale is a natural choice to attain a common 
scale. The proposed measures were transformed to a percentile scale. 
The resulting scale was percentile-normalized to range from 0 (least 
severe observed value) to 1 (most severe observed value). Because the 
clinical groups are not represented equally, a weighted percentile 
transformation was used. Percentiles were calculated using the empir-
ical cumulative distribution function, derived by weighting according to 
the inverse of the proportion of observations from each clinical category. 
The predicted values on the transformed scale were then transformed 
back into the original scale. Note that none of these DPMs included 
clinical groups as a fixed effect. 

3.2.1. The onset or time zero 
The time shift was assumed to follow δi ∼ N(0, σ2

δ ), and tcijk was the 
centered years of the visits. We also note that δi is a relative measure of 
disease progression accounting for the biomarker variabilities observed 
in the training population. On the other hand, the time of onset should 
be biased since our populations include more MCI subjects than CU 
subjects. 

For an initial year of cognitive decline or time zero, tonset, the tra-
jectories from sCU subjects should be to the left of tonset, i.e. the markers 
evolve in negative long-term times. In contrast, for pCU subjects, the 
marker trajectories should cross tonset towards positive values. Therefore, 
sensitivity and specificity with the proposed temporal ordering could be 
measured. Specificity was the percentage of sCU subjects whose last 
visits, tc

iend
+ δi where iend = max

k
(qik), had negative times with respect to 

the total number of sCU subjects: 

SPE =

{
i
⃒
⃒
⃒(i ∈ sCU) ∩ ((tc

iend
+ δi) < tonset)

}

sCU 

Regarding sensitivity, two measures were established: (a) the pro-
portion of pCU subjects who at baseline did not have cognitive decline 
and had negative times, (tc

i1 + δi) < 0 where i1 = min
k
(qik), compared to 

the total number of pCU subjects: 

SEN1 =

{
i
⃒
⃒
⃒(i ∈ pCU) ∩ ((tc

i1 + δi) < tonset)
}

pCU 

and (b) the ratio of pCU subjects whose last visits have positive times 
with respect to the total number of pCU subjects: 

SEN2 =

{
i
⃒
⃒
⃒(i ∈ pCU) ∩ ((tc

iend
+ δi) > tonset)

}

pCU 

Therefore, a time zero was estimated by means of the maximization 
of the three previous classification measures. 

4. Results 

A multivariate analysis was carried out to generate the proposed 
predictive models. For the study, 5 ROI-based MRI measures of cortical 
and subcortical structures, 13 NMs and 5 CSF biomarkers were simul-
taneously considered. Summary measures of baseline outcomes for each 

diagnosis group are presented in Table 1. 
A nested k-fold CV procedure was applied, and the proposed pre-

dictive models were built with their subsequent evaluations (see sub-
section 3.1.1). Categorical predictive models were selected taking into 
account both their prediction scores and the number of times their 
feature vectors were proposed to be evaluated. Table 2 summarizes the 
scores of the predictive models with the two cohorts. Predictive models 
with more frequent occurrences of the feature subsets (i.e. the number of 
times the proposed feature combination was evaluated by the CV pro-
cedure), higher AUC values and balanced sensitivity and specificity were 
selected. Several predictive models instead of one for each discrete time 
were presented due to these proposed models exhibiting combinations 
of markers with similar performance. Age at baseline was exclusively 
used as a covariate in LME models for the extended Cox approach. 
Furthermore, age was also used as a time-independent variable in the 
survival models. 

The classification scores were similar between the two cohorts, as 
were the combinations of proposed markers to be used to build the 
predictive models. The normalized hippocampal volume (NHV) and the 
cognitive and functional scores of ADAS11, FAQ and EcogSPTotal were 
suggested as measures to be used in the different proposed predictive 
models. When including the CSF markers, pTAU or the ratio of pTAU∕Aβ 
or TAU∕Aβ were also proposed. Over time, the scores improved in both 
populations, especially from baseline to month 12. By using age, gender 
and years of education as covariates in the modeling of the trajectories 
with LME, the scores did not show significant improvements. 

Table 3 shows the coefficients associated with the z-score variables of 
the categorical proposed predictive models at baseline, as well as their 
significant effects on the progression to MCI/dementia. The minus sign 
in the coefficient indicates that the marker is a decreasing variable with 
cognitive decline. Since the variables were normalized into z-scores, the 
absolute coefficient values indicate the importance of the variables in 
estimating the clinical prognosis. In both populations, ADAS11 and FAQ 
were the markers that contributed the most to the classification of 
cognitive decline. NHV was the third-most important measure, and age 
was the fourth. When the CSF markers were added, the ratio of pTAU∕Aβ 
had a lower weight; however, its p-value was very low, which makes its 
contribution significant. Other markers (normalized entorhinal volume- 
NEV, ECog) were also observed with less influence. However, note that 
these results correspond to a cross-sectional and marginal analysis of the 
feature vectors. Instead, the proposed approach was multivariate and 
longitudinal. 

After selecting the marker subsets for each population, the DPM al-
gorithms (GRACE and LTJMM) were applied. The measures were 
transformed into percentiles. Figs. 2 and 3 show the individual observed 
trajectories for each marker, in the original scale, ordered in the pro-
gression timeline using the two DPM approaches applied. Fig. 2 depicts 
the first cohort (316 sCU, 93 pCU and 523 sMCI) with only MRI data and 
NM. The second analysis was performed with a subgroup of the previous 
population (218 sCU, 64 pCU and 399 sMCI), including subjects who 
also had measures of CSF markers (see Fig. 3). In both figures, the long- 
term trajectories were also highlighted in each marker, population and 
DPM approach. Note that the DPMs were blind to the information of the 
clinical group of the subjects. Even so, the short-term trajectories were 
painted with different colors depending on the clinical group of the 
subjects. This visualization allows observation of the temporal ordering 
proposed by the DPM algorithms among the subjects according to the 
diagnostic categorizations. The long-term times were consistent with 
physician diagnosis. 

For a more quantitative evaluation of the predictions of the contin-
uous markers, two performance metrics were used. The first metric was 
related to the classification of the DPM algorithms in relation to subjects 
and clinical groups as a function of the long-term time, tc

i + δi. The 
second metric evaluated the estimation of the conversion times in the 
pCU subjects. The times of onset of cognitive decline (or time zero 
values) were established to maximize the classification measures based 
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on the clinical group of each patient (see subsection 3.2.1). For the first 
cohort (NM+MRI), the estimated time zero was 1.4 years with GRACE 
(SEN1 = 76.3%, SEN2 = 78.5%, SPE = 76.6%) and 3.6 years with 
LTJMM (SEN1 = 80.7%, SEN2 = 81.8%, SPE = 66.1%). For the second 
population (NM+MRI+CSF), the estimated time zero was 2.6 years with 
GRACE (SEN1 = 79.7%, SEN2 = 79.7%, SPE = 82.6%) and 2.6 years 
with LTJMM (SEN1 = 79, 7%, SEN2 = 84.4%, SPE = 79.4%) (see sup-
plementary material for further details). With the estimated time of 
onset, the conversion time in pCU subjects could be measured. This time 
was defined as the difference between the estimated time onset and the 
first visit of the patient in the disease timeline, tonset − (tc

i1 + δi). Pear-
son’s correlations were moderate. The values for the first cohort (NM +
MRI) were 0.44 (GRACE) and 0.38 (LTJMM), and those of the second 
population (NM+MRI+CSF) were 0.48 (GRACE) and 0.49 (LTJMM) (see 
supplementary material for further details). The correlations of the time 
shifts, δi, calculated between GRACE and LTJMM for the patients of the 
two populations studied was also analyzed. Strong correlations (0.84 
and 0.98) between the GRACE and LTJMM approaches for the disease 
progression time in both populations were also observed (see supple-
mentary material for further details). 

One goal of the analysis was to compare the long-term trends in the 

evolution of the markers on a common scale and to draw conclusions 
about the proposed temporal order. Figs. 4 and 5 show the long-term 
progression curves of the outcomes in percentiles. Unlike the LTJMM 
approach, GRACE allows long-term trends to be nonlinear, i.e., gk() was 
assumed to be a continuously differentiable monotone function. 
Nevertheless, with the exception of the long-term FAQ curve, in GRACE, 
the long-term curves were close to quasi-linear. From these experi-
mental observations, we suspect that the similarities of the long-term 
trajectories between the two evaluated DPM approaches were the cau-
ses of the high correlations between the estimated progression times of 
the subjects, for example tc

i1 + δi (see supplementary material for further 
details). Since the long-term trajectories of the markers were quasi- 
linear on the common percentage scale, it is relevant to analyze the 
values of the markers at the beginning of the proposed natural history 
(about 15 years before the onset of cognitive decline) or intercepts and 
their annual slopes. Intercepts with high values compared to the rest of 
the markers would show that this marker is a risk factor in the conver-
sion towards cognitive decline, while the slopes show the speed of the 
marker in relation to cognitive decline with time. Fifteen years before 
the onset of cognitive decline, EcogSPTotal presents values of 30% 
regardless of the studied cohort and the proposed approach. It has a 
slope of less than 2% per year. The second variable with the greatest 
variability of decades before cognitive decline was the normalized en-
torhinal volume in the first population and the pTAU∕Aβ ratio when CSF 
measures were included. Both variables show values of 20% fifteen 
years before onset and present slopes of 2% per year. ADAS11 and 
hippocampal volume show very similar trajectories in the two pop-
ulations and with the two approaches, with values of 15% fifteen years 
before cognitive decline and with a slope of 3% per year. Age presents 
the highest slope of all the variables used in both populations and with 
both approaches: approximately 4% per year. FAQ shows a sigmoid 
shape in its long-term trends and steep sloping in the transition to 
cognitive decline. 

5. Discussions 

In this study, we proposed a two-stage data-driven approach for the 
prediction of categorical diagnosis and disease progression modeling. 
We have focused on AD, especially in the early phase, which constitutes 
a window of opportunity for preventive therapies. The proposed meth-
odology was applied to a population recruited by the ADNI and diag-
nosed with CU at their baseline assessments, and it was determined 

Table 2 
Scores for predicting CU-to-MCI/dementia conversion using NM+MRI or NM+MRI+CSF. For each visit (Baseline, bl, Month 12, m12, Month 24, m24), a predictive 
model was built with the extended Cox approach. Numbers within parentheses represent the 95% confidence interval (except for the frequency column). 
H=Hippocampus (normalized volume); E = Entorhinal (normalized volume); MT=Medial Temporal (normalized volume); A11 =ADAS11; F=FAQ; M=MOCA; 
EP=EcogPtTotal; ES=EcogSPTotal; PT=pTAU; PTAb=pTAU/Aβ; TAb=TAU/Aβ; AUC=Area under the curve; ACC=Accuracy; SEN=Sensitivity; SPE=Specificity; 
Frequency=Minimum and maximum range of the number of times that the combination of proposed features was evaluated by the cross-validation procedure.  

Data SEN (%) SPE (%) ACC (%) AUC Frequency Optimal feature subsets 

NM + MRIbl 63.7(62.9 64.6) 64.3(63.8 64.7) 64.1(63.8 64.5) 0.688(0.683 0.693) 742–1512 H, E, A11, F, EP, ES       
M, E, A11, F, ES       
E, F, EP 

NM + MRIm12 77.9(76.9 78.9) 75.0(74.5 75.6) 74.7(74.2 75.1) 0.814(0.808 0.820) 2382–2821 H, E, F, A11, EP, ES       
E, MT, A11, F, ES       
E, F, EP 

NM + MRIm24 74.8(73.7 76.0) 77.3(76.7 77.9) 75.4(74.9 75.9) 0.822(0.814 0.829) 2170–2495 H, E, F, A11, EP, ES       
H, A11, F, EP       
H, E, A11, F, EP 

NM + MRI + CSFbl 64.4(63.6 65.3) 70.9(70.5 71.3) 69.2(68.9 69.6) 0.732(0.727 0.737) 2176–2229 H, A11, F, M, ES, PT       
A11, F, ES, PTAb       
A11, F, ES, PT 

NM + MRI + CSFm12 82.4(81.0 83.7) 71.1(70.2 71.9) 72.3(71.5 73.0) 0.833(0.823 0.842) 2176–2229 H, A11, ES, TAb       
A11, ES, PTAb       
H, A11, EP, PTAb 

NM + MRI + CSFm24 84.3(82.4 86.2) 74.7(73.2 76.2) 75.4(74.2 76.6) 0.854(0.840 0.867) 2176–2229 H, A11, F, ES, PTAb       
A11, F, ES, TAb       
E, A11, EP, PTAb  

Table 3 
Coefficients associated with the markers (in z-score values) of the proposed 
predictive models at baseline, as well as their significant effects in the pro-
gression into MCI/dementia: a) The first subset from MRI data and NMs. b) The 
second subset from MRI data, NMs and CSF biomarkers. Numbers within pa-
rentheses represent the 95% confidence interval. NHV= normalized hippo-
campal volume; NEV= normalized entorhinal volume.  

Marker coefficient p-value 

NHV -0.33 (− 0.34 − 0.33) 0.019 (0.015 0.023) 
NEV -0.10 (− 0.11 − 0.09) 0.470 (0.377 0.563) 
ADAS11 0.41 (0.40 0.41) 0.000 (0.000 0.000) 
FAQ 0.29 (0.28 0.30) 0.005 (0.004 0.006) 
EcogPtTotal 0.13 (0.12 0.13) 0.189 (0.151 0.226) 
EcogSPTotal 0.07 (0.06 0.08) 0.532 (0.427 0.638) 
Age 0.25 (0.24 0.25) 0.067 (0.054 0.081) 
NHV -0.30 (− 0.31 − 0.29) 0.068 (0.054 0.081) 
ADAS11 0.48 (0.47 0.49) 0.001 (0.001 0.001) 
FAQ 0.47 (0.46 0.48) 0.000 (0.000 0.000) 
EcogSPTotal 0.25 (0.26 0.24) 0.111 (0.089 0.133) 
pTAU/Aβ 0.25 (0.24 0.26) 0.012 (0.009 0.014) 
Age 0.28 (0.28 0.29) 0.082 (0.066 0.099)  
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whether their diseases had converted to MCI/dementia during the 
follow-up of subjects. To explore the role of amyloid pathology, we 
applied our approach to a subset of the original data involving only 
individuals with amyloid and tau information available by means of CSF 
biomarkers (see Table 1). 

We developed predictive models of CU-to-MCI/dementia progres-
sion that combine a very small subset of MRI-based data, CSF markers 
and standard cognitive measures. These markers are easily interpret-
able, generating robust, verifiable and reliable predictive models. The 
predictive models were built using longitudinal data. LME models of the 
longitudinal trajectories of the markers were used, and the survival 
analysis only explored the information of the subjects until the con-
version or censoring times by means of the extended Cox approach. 
Feature subsets of different dimensions were preselected using the 
mRMR algorithm, and a resampling method searched through each 
dimension for the feature subsets that appeared most frequently. Sub-
sequently, the proposed feature subsets were evaluated in terms of the 
cross-validated classification accuracy (see Fig. 1, Table 2). The 

correlation matrices between random intercepts and random slopes 
from the selected markers show that these measures complement each 
other, providing additional information to the problem (see supple-
mentary material). This quality is derived from the proposed approach 
for the feature selection and cross-validation of the predictive models. 

Previous studies have evaluated different biomarker combination 
strategies (Korolev et al., 2016; Gavidia-Bovadilla et al., 2017; Iddi et al., 
2019), with the aim of providing a framework for clinical classification 
and selection of subjects for clinical trials. Evidence that measures of 
amyloid abnormalities in the brain improve accuracy in detecting 
cognitive decline has prompted their inclusion as selected biomarkers 
(Sevigny et al., 2016; Wolz et al., 2016; Bertens et al., 2017). In this 
direction, it has been suggested that the inclusion of hippocampal vol-
ume, together with amyloid positivity, could support the identification 
of subjects who progress more rapidly to cognitive decline (Wolz et al., 
2016). In the two studied populations, both the feature selection for 
building the predictive models and their classification scores were 
similar. The inclusion of CSF markers added the pTAU∕Aβ ratio, which 

Fig. 2. For the first studied population (MRI data and NMs), the long-term trajectories (black lines) are superimposed over the subject-level observations in the 
original scale and colored according to diagnosis (sCU in green, pCU in blue and sMCI in red). The first row depicts the trajectories from the GRACE algorithm, and 
the second row shows the trajectories derived using LTJMM. NHV= normalized hippocampal volume; NEV= normalized entorhinal volume. 
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slightly improved the classification scores. This measure is well corre-
lated with amyloid PET measurements (Hansson et al., 2018). The se-
lection of pTAU∕Aβ over other CSF biomarkers reflects the synergistic 
effect of tau and amyloid neurodegenerative processes, which were 
combined into a single diagnostic biomarker (Blennow et al., 2010). This 
is aligned with recent evidence from a study demonstrating that the CSF 
pTAU∕Aβ ratio had 88% sensitivity and 93% specificity in identifying 
the presence of amyloid pathologies (Hansson et al., 2018). The selected 
markers were consistent with previous works. Several authors used 
different vectors to detect pCU patients. Albert et al. (2018) proposed to 
combine the Digit Symbol Substitution test, Paired Associates Immedi-
ate Recall scores, Aβ, pTAU, right hippocampal volume, right entorhinal 
cortex thickness and APOE ε4 status. Palmqvist et al. (2021) used the 
measures of pTAU status (abnormal/normal), number of APOE ε4 al-
leles, age, education level, and the test scores from the 10-word delayed 
recall test, Trail-Making test B, and animal fluency. Steenland et al. 
(2018) combined the hippocampal volume, TAU/Aβ ratio, and summary 
memory score from the ADAS-Cog, RAVLT, Logical Memory, and MMSE. 

Given a selected marker subset of a studied population, DPM ap-
proaches reveal the natural history of cognitive decline by ordering the 
short-term trajectories of the subjects, which are in different stages of 
AD. The estimated times of disease progression must be validated. In the 
Results section, the time zero was estimated from the clinical classifi-
cation of the patients. Another way to calculate the time zero could be by 
means of the definition of the preclinical AD. At this stage, subjects 
present, at least, Aβ positivity (Jack et al., 2018). The pTAU∕Aβ ratio is 
highly concordant with PET classification and predicted clinical pro-
gression (Hansson et al., 2018). Values above 0.028 indicate positive 
results for amyloid. The cutoff for pTAU∕Aβ was defined against 
18 F-florbetapir PET in ADNI (Hansson et al., 2018). Considering the 
long-term trajectory of the pTAU∕Aβ ratio for the population with CSF 
biomarkers and using the threshold of 0.028, the time zero values were 
6.4 and 5.3 years according to the GRACE and LTJMM approaches, 
respectively. For the time zero values estimated according to the clinical 
classification of the patients, the pTAU∕Aβ values were 0.023 in year 2.6 
using the GRACE approach and 0.024 in year 3.6 with LTJMM. 

Fig. 3. For the second studied population (MRI data, NMs and CSF biomarkers), the long-term trajectories (black lines) are superimposed over the subject-level 
observations in the original scale and colored according to diagnosis (sCU in green, pCU in blue and sMCI in red). The first row depicts the trajectories from the 
GRACE algorithm, and the second row shows the trajectories derived using LTJMM. NHV= normalized hippocampal volume. 
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Fig. 4. For the first studied population (MRI data and NMs), long-term progression curves of the outcomes in percentiles according to the applied DPM approach: a) 
GRACE (left), b) LTJMM (right). 

Fig. 5. For the second studied population (MRI data, NMs and CSF biomarkers), long-term progression curves of the outcomes in percentiles according to the applied 
DPM approach: a) GRACE (left), b) LTJMM (right). 
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GRACE allows different monotonous curve shapes on the long-term 
trajectories without prespecifying any parametric families. LTJMM im-
poses that long-term trajectories must be linear. Here, in most of the 
selected markers, all trajectories tend to track very closely to each other 
in near-linear trajectories in GRACE, except for FAQ (see Figs. 4 and 5). 
These results are in line with those already indicated by Donohue et al. 
(2014). As a consequence, the high correlation between the time shifts, 
δi, obtained by GRACE and LTJMM is well explained (see supplementary 
material for further details). On the other hand, the GRACE estimates of 
the time shifts, δi, of the common subjects between the two studied 
populations tended to be very similar. Therefore, the long-term trajec-
tories of the proposed markers shared between the two cohorts were also 
very similar. Greater discrepancies were found in the estimates of δi with 
LTJMM (see Fig. 6). This means that the estimates of δi from GRACE 
were more robust than those produced using LTJMM, since the 
long-term trajectories maintained similar tracks even when changing 
part of the population and with some different markers. 

Based on both the high correlation of δi between the common sub-
jects of the two populations with different vectors, as well as the simi-
larity of the trends of the long-term trajectories between the common 
markers, which is especially true with GRACE, we could conclude that, 
at least in the early stage, CSF biomarkers do not make significant 
contributions in the predictive models and DPMs of the clinical scheme, 
although their inclusion slightly improves both the categorical classifi-
cation results and the correlation between the conversion times of the 
pCU subjects and their estimates using the DPM algorithms. In any case, 
the current trend would be to use NMs in predictive models and DPMs 
for the evolution of clinical symptoms and to use CSF biomarkers for the 
quantification of neuropathological processes, both in amyloid and tau 
pathology as well as in the neurodegenerative process. 

Table 3 shows the weights of the selected markers at baseline for the 
classification between the clinical categories of sCU or pCU. A striking 
difference is observed in how the proposed markers first become 
abnormal along the disease time axis (see Figs. 4 and 5). Although FAQ 
and ADAS11 were the markers that most contributed to the classification 

of cognitive decline (see Table 3), the pTAU∕Aβ ratio, everyday cogni-
tion and the volume of the entorhinal cortex showed alterations of more 
than 20% fifteen years before the onset of cognitive decline. Apart from 
the pTAU∕Aβ ratio, which has already been discussed, the other two 
markers require some additional comments. Although functional 
impairment was thought to occur only after cognitive decline, studies 
suggest that subtle functional impairment occurs even in cognitively 
normal individuals who then progress to MCI or dementia (Weintraub 
et al., 2018). The ECog scale is an assessment tool for daily function that 
independently queries the patient and an informant about everyday 
functional capacities in six domains (Farias et al., 2008). 
Informant-based ratings on the ECog have been shown to be associated 
with objective measures of disease status, although self-reports may also 
have sensitivity in the early phase (Rueda et al., 2015). Informant-rated 
ECog scores are also strongly associated with the risk of progression 
from MCI to dementia (Lau et al., 2015). Structural MRI studies in 
subjects diagnosed with AD or MCI consistently show atrophy in the 
entorhinal cortex and hippocampus, thus gaining a broad consensus that 
atrophy of the medial temporal lobe (MTL) is the first MRI sign of 
emerging AD (Tan et al., 2014). In fact, the MTL appears to be the 
earliest site of AD-related tau accumulation, with tangles initially 
appearing in the transentorhinal and entorhinal cortex and hippocam-
pus (Soldan et al., 2015). The entorhinal cortex was the most sensitive 
brain region and brain structure, which changed at the earliest stages 
during the process of AD initiation and had a maximal atrophy rate in 
comparison with the hippocampus and amygdala (Miller et al., 2015; 
Zhou et al., 2016). Furthermore, atrophy in the entorhinal cortex 
occurred earlier than the clinical manifestation at approximately 8–10 
years and even before hippocampal and amygdalar atrophy appeared 
(Younes et al., 2014; Miller et al., 2015). 

5.1. Limitations and future works 

Although both the proposed methodology for the constructions of 
DPMs as well as their evaluation criteria were novel, however, the 

Fig. 6. Temporal evolution of the long-term trajectories, on the percentile scale, of the common markers between the two studied populations. A solid line shows the 
long-term trajectory of the population with MRI and NM data. The dashed line shows the trajectories of the population that also have CSF measures. The first row 
shows the long-term trajectories extracted with GRACE. In the second row, the trajectories appear by means of LTJMM. 
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moderate linear correlation between the conversion times of the pCU 
subjects and the times estimated by the approaches require further 
analysis of new vectors. Note that the fixation of the marker vector de-
termines the natural history of disease progression. In addition, given 
that predictive models and DPMs analyze the temporal evolution of 
clinical symptoms, while CSF biomarkers are those that characterize the 
type of neuropathological disorder in cognitive decline, a new line of 
future work is proposed. A double quantification system will process the 
transition from CU to MCI/dementia: (a) The detection of amyloid and 
tau pathologies by means the use of CSF biomarkers, and, (b) Predictive 
models and DPMs would explain the degree of cognitive decline, mainly 
through the use of neuropsychological measures. 

The modeling of short-term trajectories in both predictive models 
and DPM approaches was based on linear functions, i.e., using LME 
models. Nonlinear modeling of the short-term trajectories could reduce 
the mean absolute error of markers and improve the predictions (Ishida 
et al., 2019). Additionally, the information on the conversion and 
censorship times of the subjects in the process of cognitive decline could 
be considered in the DPM algorithms. In this sense, the estimation of the 
time shift of each subject, δi, in the disease timeline could be improved 
by including this information. 

The progression of AD is affected by multiple factors. Including these 
factors as covariates in the DPM approaches would allow us to analyze 
whether the progression of AD would accelerate in some subgroups of 
the population. In this regard, the influence of sex or APOE genotype on 
the trends of the long-term trajectories of the selected markers should be 
explored (Ishida et al., 2019). 

Finally, the results of the predictive models and DPMs should be 
compared when changing the criteria for the selection of subjects 
belonging to the studied population. Cognitive clinical groups were used 
here. Considering only CU or MCI subjects with amyloid pathology 
could result in less variability in the temporal evolution of the markers. 
This hypothesis should be addressed in the development of new pre-
dictive models and DPM related to the evolution of AD. 

6. Conclusions 

The selection of a set of markers that reliably detects the evolution of 
Alzheimer’s disease is a challenge. These measures will allow us to focus 
on the affected population, improving the effectiveness of clinical trials. 
Additionally, given the selected markers, their acquisition, the con-
struction of categorical predictive models or DPMs, and the study of the 
effects of the covariates could be improved. However, the heterogeneity 
of the disease presents a major problem for its temporal modeling. This 
work intended to select a set of measures capable of capturing the di-
versity of the cognitive decline change in AD. In this study, we proposed 
a two-stage data-driven approach for the prediction of categorical 
diagnosis and disease progression modeling. We developed categorical 
predictive models of CU-to-MCI/dementia progression that combine a 
very small subset of MRI-based data, CSF markers and standard cogni-
tive measures. The normalized entorhinal and hippocampal volumes, 
the cognitive and functional scores of ADAS11, FAQ and EcogSPTotal 
and the ratio of pTAU∕Aβ were suggested as measures to be used in the 
different proposed predictive models. After selecting the marker subsets, 
the DPM algorithms (GRACE and LTJMM) were applied. The long-term 
times were consistent with physician diagnosis. The estimates of time 
shifts, δi, from GRACE were more robust than those produced using 
LTJMM. The ratio of pTAU∕Aβ, EcogSPTotal and the normalized volume 
of the entorhinal cortex show alterations of more than 20% fifteen years 
before the onset of cognitive decline. 
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